

ECE317 : Feedback and Control

Lecture 1 Introduction

Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University

Outline

- Introduction of the course
 - Automatic control
 - Open-loop system and closed-loop system
 - Goal of the course

What is "Control"?

- Make some object behave as we desire.
- In control engineering, the controlled object is called *system, or plant, or process*.
- Imagine "control" around you!
 - Room temperature control
 - Car driving, bicycle riding
 - Voice volume control
 - Balance of bank account
 - "Control" (move) the position of the pointer
 - etc.

What is "Automatic Control"?

- Not manual!
- Why do we need automatic control?
 - Convenient (room temperature control, laundry machine)
 - Dangerous (hot/cold places, space, bomb removal)
 - Impossible for human (nanometer scale precision positioning, work inside the small space that human cannot enter, huge antennas control, elevator)
 - It exists in nature. (human body temperature control)
 - High efficiency (engine fuel-injection control)
- Many examples of automatic control around us

Outline

- Introduction of the course
 - Automatic control
 - Open-loop system and closed-loop system
 - Goal of the course

Example: Toaster

• A toaster toasts bread, by setting timer.

- A toaster does not measure the color of bread during the toasting process.
- What happens if your setting is wrong....
- However, a toaster would be more expensive with:
 - Sensors to measure the color, and
 - Actuators to adjust the timer based on the measured color.

• A laundry machine washes clothes, by setting a program.

- A laundry machine does not measure how clean the clothes become.
- Control without measuring devices (sensors) is called *open-loop control*.

- Control with measuring devices (sensors) is called closed-loop (feedback) control.
- Manual (not-automatic) control

- Cruise control can be both manual and automatic.
- When the controlled system is "Automobile", *input* and *output* depend on *control objectives*, and not unique!

• Maintain the temperature in a room.

- Temperature control can be automatic.
- Note the similarity of the diagram above to the diagram in the previous slides!

• Maintain the water level in a tank.

- Water level control can be automatic.
- Other examples : autopilot, catching a ball, etc

THE STUDENT-PROFESSOR LEARNING PROCESS

Automatic feedback control systems: Elements and design objective

 Control system design objective is to design a controller such that the output follows the reference in a "satisfactory" manner even in the face of disturbances.

Features of feedback control

- Advantage: Strong, or robust, against
 - uncertainty
 - unpredictable disturbance
 - variation of plant etc.
- Disadvantage:
 - The action is taken after some undesirable event happens.
 - Stability issues

Outline

- Introduction of the course
 - Automatic control
 - Open-loop system and closed-loop system
 - Goal of the course

Systematic controller design process

Goal of this course

To learn basics of feedback control systems

- Modeling as a transfer function and a block diagram
 - Laplace transform (Mathematics!)
 - Electrical, mechanical
 - Example system: DC-to-DC switching converter
- Analysis
 - Stability: Pole Locations, Routh-Hurwitz criterion
 - Time response (transient and steady state)
 - Frequency response, Bode diagram
- Design
 - frequency response technique, Bode diagram
 - frequency compensation,

Theory, simulation with Matlab and PECS, practice in laboratories

Course roadmap

Matlab & PECS simulations & laboratories